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Abstract

This project explores the intersection of com-
puter vision and music generation by utilizing
image captioning models on album cover art
and employing text-to-music generation mod-
els, such as MusicGen, to create music based
on these captions. By training a model to gen-
erate descriptive captions from album covers,
we aim to develop a system that automatically
produces music aligned with the visual themes
of album artwork. This innovative approach
opens new avenues for creative AI-assisted mu-
sic production.

1 Introduction

Music is prevalent in our culture and even dates
back to times of ancient history. Today, when artists
create music, they consider not only the many struc-
tures of music, such as tone, timbre, rhythm, pitch,
and key, but more broadly, how a user might expe-
rience their music. Album covers are an integral
part of an artist’s style, hinting at the album’s genre
and mood and evoking a broader multi-sensory
appreciation of music [Ioannou et al.]. However,
connecting the visual design of the album cover
with the music itself hasn’t been explored much.
With new technology in image captioning and text-
to-music generation, we can potentially automate
music creation based on how the album cover looks.
This project aims to use image captioning to de-
scribe what’s shown on album covers and then use
models like MusicGen to turn these descriptions
into music. This could open a creative way for
artists and producers to explore the link between
what we see and hear in music.

2 Related Work

Developments of various architectures and ap-
plications of large language models have grown
since the introduction of self-attention mechanisms
[Vaswani et al., 2017]. More recently, innovation

has extended to developing multi-modal large lan-
guage models such as GPT4 [Adler et al.]. The rise
of generative models has also led to innovation in
other modalities, such as its application into music
generation, with the first convincing result starting
with models such as WaveNet [Oord et al., 2016].
Since then, model architecture and performance
have greatly accelerated, notably the development
of encoder-decoder architecture models such as the
EnCodec model [Défossez et al., 2022]. In the En-
Codec model, a music file is fed to a streaming,
convolutional architecture encoder, which encodes
the music clip to a latent space. The results are
then quantized and reconstructed to the decoder,
and the model is trained via a reconstruction and
adversarial loss.

3 Pretrained Models and Datasets

Our project aims to explore the development of
an image-to-music pipeline with LLMs. Rather
than delving into philosophical interpretations of
how music should be conditioned on image inputs,
we strive to ground our pipeline on explainable
intermediaries in the generation process through
text. We plan on incorporating image-to-text, text-
to-music, and prompt engineering into our pipeline.

3.1 Pretrained Models

Image Captioning: We utilize CLIP (Contrastive
Language-Image Pretraining) to generate captions
from album cover images. These models are
trained on extensive image-text datasets and can be
fine-tuned for captioning album art.

Text-to-Music Generation: To convert the gen-
erated captions into music, we employ Meta’s Mu-
sicGen model. This model is designed to produce
music based on text prompts, making it well-suited
for transforming captions into musical composi-
tions.



3.2 Dataset
The MusicOSet Dataset: The MusicOSet dataset
[Rocha et al., 2019] serves as a comprehensive
resource for music data mining, providing en-
riched metadata on music, artists, and albums.
This dataset includes an annotated collection of
over 20,000 songs, over 26,000 albums, and
11,000 artists. The data is structured in a rela-
tional database format (SQL), featuring a complex
schema encompassing various attributes essential
for our project.

• Artists Information: Each artist entry con-
tains detailed information such as:

– Popularity Score: Rated from 0 to 100,
indicating the artist’s overall popularity.

– Type: Classification of the artist (e.g.,
solo singer, band, duo, rapper).

– Genres: Associated musical genres that
define the artist’s style.

• Albums Data: The dataset provides extensive
details on albums, including:

– Popularity Ratings: Reflecting the al-
bum’s reception in the music industry.

– Total Number of Tracks: The count of
individual tracks within each album.

– Album Type: Categorization into full al-
bums, singles, or compilations.

– Image URLs: Links to album cover im-
ages that visually represent the music.

• Tracks Metadata: Each track entry is rich
with metadata, including:

– Popularity Score: A score reflecting
the track’s popularity similar to that of
artists.

– Explicit Content Indicator: A flag indi-
cating whether the track contains explicit
content.

– Type of Track: Differentiation between
solo and collaborative tracks.

– Musical Attributes: Detailed features
such as key and mode (major/minor),
time signature, energy levels, danceabil-
ity, and various acoustic characteristics.

Musical Attributes:The dataset encompasses
numerous musical characteristics critical for analy-
sis:

• Acousticness: Measures the likelihood that a
track is acoustic (0.0 to 1.0).

• Danceability: Reflects how suitable a track is
for dancing based on tempo and rhythm (0.0
to 1.0).

• Energy: Indicates intensity and activity levels
in tracks (0.0 to 1.0).

• Instrumentalness: Suggests the probability
of a track being instrumental (values closer to
1.0 indicate higher likelihood).

• Liveness: Measures audience presence during
recording; higher values suggest live perfor-
mances.

• Loudness: Overall loudness represented in
decibels (dB), typically ranging from -60 to 0
dB.

• Speechiness: Detects spoken words; values
near 1.0 indicate speech-like recordings.

• Valence: Describes musical positiveness con-
veyed by a track (0.0 to 1.0), where higher
values indicate more positive emotions.

This comprehensive metadata enables re-
searchers to correlate visual elements from album
covers with musical characteristics. By leveraging
this dataset, our project aims to explore meaning-
ful relationships between image captions derived
from album art and the music generated through
our pipeline. This exploration will enhance our
understanding of factors contributing to musical
popularity and trends within the music industry.

3.3 Pipeline

The pipeline for our project, "AlbumGen: Image-
to-Music Geffectively eneration with Textual Inter-
mediaries," is designed to facilitate the generation
of music based on album cover art through a struc-
tured, multi-step approach. This section outlines
the key components of the pipeline, including the
processes of image embedding, feature extraction,
and music generation.

Album-to-Text: The pipeline begins with the
conversion of album cover images into textual rep-
resentations. This is achieved using a Vision Lan-
guage Model (VLM) that extracts key musical fea-
tures and attributes from the images. The model
is prompted to output essential musical parameters



Figure 1: Flowchart of the pipeline for generating music
from album cover images, illustrating the key steps from
image processing to music generation.

alongside a descriptive caption based on the album
title.

CLIP Model Selection for Image Embed-
ding: For image embedding, we utilize the CLIP
model “openai/clip-vit-base-patch16.” This model
employs a Vision Transformer (ViT) architecture to
align image and text representations by maximizing
their similarity during training. We selected this
pre-trained model without fine-tuning to leverage
its robust capabilities in zero-shot learning tasks,
allowing it to generalize effectively across various
image classification scenarios.

Image Processing: The dataset used, Musi-
cOSet, contains URLs of album art. We scraped
a total of 1,000 images, resizing them to 640x640
pixels for consistency in input dimensions for the
CLIP model.

Embedding Extraction: In this step, the prepro-
cessed album cover images are passed through the
CLIP model to extract embeddings. Each image
is transformed into a 512-dimensional embedding
that captures its visual semantics, encoding vari-
ous visual features for efficient comparison and
retrieval.

3.3.1 Visual Features Representation:
The embeddings generated by CLIP encapsulate a
range of visual features crucial for understanding
the relationship between album art and musical gen-
res: Color Palettes: Dominant colors may correlate
with specific musical genres. Textures and Styles:
Artistic styles can provide insights into the mood
or theme of the music. Objects and Symbols: Ele-
ments in the artwork can suggest genre or thematic
content.

Similarity Metrics: To compare embeddings
retrieved from FAISS (Facebook AI Similarity
Search), we employ L2 distance as our similar-

Figure 2: OpenVLM Leaderboard

ity metric. Given our dataset comprises fewer than
1,000 records, we prioritize quality matches over
quantity to ensure that retrieved images closely
align with their corresponding musical features.

Top K Selection: For each music feature ex-
tracted from MusicOSet (including ’acousticness’,
’danceability’, ’energy’, ’instrumentalness’, ’live-
ness’, ’loudness’, ’speechiness’, ’valence’), we cal-
culate average values from the top K similar albums
identified through our similarity search. Experi-
mentation with different values of K (ranging from
1 to 20) revealed that K = 5 yielded optimal results
in balancing retrieval quality and computational
efficiency.

3.3.2 Vision Language Model for
Image-to-text translation

Model selection: The selection of the VLM greatly
impacts the inference time and training time needed
to prompt the model. To first decide on which
VLM to use in our implementation, we referred to
the HuggingFace vision leaderboard and selected
an open-source model that performed within high-
performing vision task. From this selection crite-
rion, we arrived at using the InternVL2-1B model,
a recently released VLM model adapted from the
Qwen0.5B LLM, which has been fine-tuned for
instructions.

VLM Prompt Design We initially designed our
prompt template by assigning the LLM the role of
a “music artist” tasked with describing the acoustic
elements of the album for music generation. While
the VLM was capable in providing a description,
there was no quantitative method for us to measure
how effective the model is in understanding the
music album’s acoustic features. Furthermore, as
the role of language in this pipeline is to act as
a deterministic semantic carriers, we wanted to
ground the textual intermediaries to a processable,
codable format.

We adopted an approach that prompts the VLM
to generate a JSON-formatted output of the acous-



Figure 3: Training loss charts

tic feature. The prompt consists of three main com-
ponents – a role assignment, an acoustic feature
definition from the MusicOSet, and the expected
format. In a few trial runs, we noticed that the VLM
was only partially effective in generating usable
JSON format, suggesting that the model needed to
be finetuned further for consistency.

3.4 LoRa Finetuning
To improve the consistency in the JSON format, a
LoRa adaptor was then finetuned using the train-
ing set. The training parameters ana d set-up can
be found in our open-sourced repo under finetune/
internvl2_1b_finetune_lora_album.sh. During our
initial implementation, we used a LoRa model of
rank=8. However, the model was >8M in param-
eter size by itself, causing overfitting to the train-
ing data. To reduce the effects of this, a second
LoRa model was trained using only a rank=4. This
still resulted in a large model with 2,199,552 train-
able parameters, which suggested the model is still
likely to require datasets of much larger degree of
freedom to be fully configured. The training was
conducted using the Nvidia Pytorch 24.05 docker
container hosted on a local RTX3070Ti set-up. As
this model was newly released, transformers auto-
models do not automatically support LoRa training
for this model yet. As a result, we directly cloned
the InternVL2 repository and finetuned the model
using shell commands. The VLM was finetuned
for the entire training set using the exact train text
split in our RAG evaluation. Due to the minor train-
ing size breakdown, it consisted of only 1 epoch
of finetuning. The training losses for both LoRa
models can be seen in the figure below.

3.5 Musical prompt generation:
Acoustic description generation Given a JSON out-
put with acoustic feature variables, our following
task is to translate this to a usable music prompt
for the MusicGen model. To explore how we can
translate an acoustic variable to a music descrip-
tion, we prompted the GPT4o model, a description
of the MusicOSet feature and the acoustic variable

Figure 4: LoRa Finetune parameters

to generate a mapping of acoustic variables and its
corresponding words interpretation. For instance,
the valence variable is “A measure from 0.0 to 1.0
describing the musical positiveness conveyed by a
track”, a floating variable from 0 to 1.

Given this set of definition to the GPT4o model,
the following valence mapping was devised. As
we wanted to keep textual intermediaries consistent
across generations, we decided to create the music
description through a hard-coded approach. Whilst
this approach is deterministic, this decision does in-
troduce musical bias, particularly in how the music
descriptions are defined.

Text-to-Music: A custom-generated prompt
will then used for music generation with MusicGen.

The last step in our pipeline was to integrate
our pipeline with the MusicGen model. The Hug-
gingFace musicgen-small model implementation
was used in this section, and the original pretrained
weights was used.

Connecting all of the components, we were able
to successfully develop a novel pipeline that is
able to generate music from textual intermediaries
at zero-shot and few-shot (through RAG). To im-
prove the interaction between the model and user,
a simple chat bot version was created under infer-
ence/musicgenchat.py, in which upon initialization,
the user is prompted to enter a .jpg image in the
test images folder, and the resulting music prompt



Figure 5: Example of generation chat

and music is then generated in one forward pass.
An demo video of this instance was recorded, and
the Figure below shows this demo in operation.

Based on the pipeline, a subset of the test images
were generates, with corresponding prompts
saved for evaluation. The corresponding images
and audio files are in our GitHub repository
(https://github.com/JosephLaiCY/6000N-Multi-
modality-LLM).

Evaluation

3.5.1 Evaluation textual intermediary
consistency

Using the same prompt above, the pretrained and
VLM outputs were evaluated on the test data and
using the same MSE metric used in the RAG eval-
uation section above. We adopted to use a strict
cut-off approach, in which any output that does not
produce a valid JSON format will be assigned a
Null score. We used this as a metric evaluating
intermediary consistency. Amongst the 107 test-
images, a LoRA adaptor successfully generated 75
valid outputs, compared to the 21 valid outputs the
pretrained model generated. This suggested that the
LoRa adaptor increases the consistency of generat-
ing a codified JSON object for further processing
in the pipeline. Since the LoRa adaptor was only
trained on a small dataset, this large increase does
suggest that further data could potentially further
improve the model’s generational consistency.

3.5.2 Music Compatibility to prompt
evaluation

Both visual and audio inspection was then con-
ducted to explore the generated results, along with
it intermediary outputs. From our initial demonstra-
tion, we generated music using the album cover of
"Forcefield" by Canadian rock band Tokyo Police
Club. Based on the image, two music variations

Figure 6: MSE Comparison

Figure 7: Tokyo Poluce Club album image

were generated - one from zero-shot inference by
the LoRa trained VLM, and another one supported
by RAG.

Based on the test album image, the models gen-
erated the two corresponding musical prompts that
were then fed into MusicGen seen below. The re-
sulting music can be found in our open sourced
repository. Inspecting the resulting outputs, it can
be seen that at both zero-shot and few-shot, both
methods were able to identify the album to be a
rock genre, potentially due to the pretrained VLM
model being exposed to this album before. Both
RAG and zero-shot models generated acceptable
music quality, with prompt descriptions seen in the
Figures below.

However, there were some scenarios in which
the VLM pipeline tended to hallucinate and gen-
erate erroneous music prompts that led to notice-
ably un-matched music for the album. For exam-
ple, in another music generation evaluation, music
was generated using the "Bo Bice 3" music album,
which features country-rock artist Bo Bice. In this



Figure 8: Zero-shot prompt generation of Tokyo Police
Club

Figure 9: Few-shot prompt generation of Tokyo Police
Club

generation, both the zero-shot VLM and the RAG-
enabled VLM were able to identify the artist as
"Bo Bice", but the genre predictions had variations.
Specifically, the RAG model hallucinated and re-
sulted in a prediction of a genre "male," which is
an invalid music genre.

In the above cases, while a image-to-text gener-
ation provides an explainable JSON format for us
to debug and understand the nature of the model,
how the resulting text-to-music generation produce
a valid ouput is relatively subject. Hence, to holis-
tically evaluate and quantify the effectiveness of

Figure 10: Bo Bice 3 Music Album

Figure 11: Zero-shot prompt generation of Bo Bice

Figure 12: Few-shot prompt generation of Bo Bice 3
with RAG

a model, a further study with human labelers will
need to be conducted. To evaluate the musical-
ity and the validity of the generated musical re-
sults, we propose a study inspired by Reinforce-
ment Learning with Human Feedback (RLHF), a
technique used during ChatGPT training. RLHF
enables models to better align their outputs with
human preferences by incorporating feedback from
human evaluators into the training process.

In this context, we envision a process where hu-
man labelers evaluate image-audio pairs generated
by the model. For each pair, labelers would assess
criteria like musicality (the quality and structure of
the music) and compatibility (how well the music
aligns with the mood, theme, and aesthetics of the
album cover). These evaluations would form the
basis for training a reward model, which predicts
the quality of the image-audio pairs.

The reward model would then guide the base
generative model—responsible for creating audio
descriptions or music tokens—through reinforce-
ment learning. The model would iteratively re-
fine its outputs to maximize alignment with hu-
man preferences. Variants of music for each album
could be generated by altering the seed inputs to
the model, providing diverse outputs for evaluation.
The RLHF process would involve multiple itera-
tions, with labelers scoring and ranking outputs at



each stage to fine-tune the model further.
In preparation for such studies, we have gener-

ated image-audio pairs in our GitHub repository
for evaluation. This dataset will serve as a founda-
tion for human labeling and subsequent model im-
provements. The insights gained from this RLHF-
inspired process will enhance the model’s ability
to generate high-quality, contextually appropriate
music tailored to specific album cover art.

Limitations & Future Work
We proposed the following areas for future ex-

ploration. Firstly, given the large trainable parame-
ter size of the LoRa adaptor, more training data is
needed to be conducted as it is likely overfitting to
the dataset at the moment. As future explorations, a
larger set of training data should be used to enhance
the VLM’s accuracy in predicting acoustic features.
Secondly , how a music description can be mapped
remains largely unexplored. In our implementa-
tion, we adopted a naïve approach by hardcoding
the music descriptions generated by a LLM. A fu-
ture area for exploration would be to bypass this
phase and directly train the LoRa adaptor to the mu-
sic descriptor embedding. Lastly, how to evaluate
the musicality of a music is subjective and requires
further studies to better assess the effectiveness of
music generated through this approach.

Conclusion
Overall, our work demonstrated the ability to

generate music from image through controllable,
explainable textual intermediaries. We conducted
a series of explorations ranging from conducting
RAG evaluations, to use of LoRA finetuning, and
finally the creation of a novel pipeline with capabil-
ities of generating explainable music in zero-shot.
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