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Background: Reinforcement

Reinforcement Learning

Framework for modelling decision-making process as MDPs.
Goal: Find a policy that maximizes the expected cumulative reward:

J(7) £ Er [Z v r(st, at):| .
t=0

Critic Function

We also define d™(s) as the distribution over the state space when following policy w. To
estimate the expected cumulative reward for a given policy 7, the critic function Q™ (s, a) is
used:

Qﬂ-(sv a) = r(s, a) + 'Y]ES’NT(S,a), al ~m(s’) [QW(Slv a/)] .

Remark: Critic Learning in Deep RL
The critic can be learned by minimizing the mean squared Bellman error over an experience
replay dataset D = {(s;, a;, s/, ri)}, which consists of trajectories generated by the policy . This
objective is given by:
. T / / T z
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Background: Offline RL &

Offline RL and Behavioural Cloning

Implementation of online RL or collection of RI data can be too costly.

Critic Q can be reframed as a supervised learning approach be offline collected action-state data
D by expert policy 3 to estimate Q in an offline manner.

Challenge with Offline RL

Learned policy may have distribution shift if it expert selected actions not representative of D! J

Past Work: OT for Behavior Cloning (WBRAC)

Optimal Transport (OT) measures, such as the Wasserstein-1 distance.
Author: EMD distance no mechanism to infer importance of each action, and too complicated
to calculate.

min, ma-XVHfHLgl ]ESND,aN‘lr(s) [_Qw(sa a) ] + '(E(s,a)er [f(87 a)] - ESND,aN‘lr(s) [f(sa (1)] )(8)

Critic Wasserstein-1 distance

where « is a behavior cloning coefficient.
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Motivation: OT Extensions

Maximin OT Formulation (Korotin et al. 2022)
Simultaneously computes OT distance and OT map T:

max min Buwu[c(x, T(x)) = F(T()] + Byms[F(1)]

where T:X — Y and f is the Kantorovich potential. The Rockafellar interchange
theorem enables this efficient neural solution for strong and weak OT.

Extremal OT Formulation (Gazdieva et al. 2023)

Balances matching strictness with w:

EOT,(u,v) := min /C(X,y) dn(x,y)

m<w-v, m€N(p,v)

where only a 1/w fraction of v must be matched.
w > 1: Only the closest 1/w fraction of v is matched; rest is ignored.

w | Matched v | Description
1 100% Full match
2 50% Closest half
3 33% Closest third
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Methodology: Entire RL as OT problem

Step 1: RL as Monge/Kantovorich OT
Offline RL can be framed as an optimal transport (OT) problem:

i ]EN ~TT -Q" )
rpalpls) TP een [2 Q75 )

Step 2: Stitching with Partial OT

To focus on optimal actions within 3, we relax to a partial alignment:

gl ) D) [=Q7(sa)]

The dual for the partial OT problem can be formulated as:

max Eswp, anr fe(s,a) + wEsp, anpf(s, a)

where f; is a cost-related function parameterized by neural networks, and w is the
unbalance coefficient.

* Key distinction with other OT papers: Instead of adding OT regularization, the
entire policy optimization is cast as an OT problem, mapping only to optimal
actions as defined by Q.
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Methodology: Partial Polic arning

r]r}g%{ mgn Esup,amn(s) [ —Q (s, a,z - f(s, a)] + wWE(s,0)~D [f(s, a)l .

~
Cost Constraints

Algorithm 1 Partial Policy Learning
Input: Dataset D(s, a,r,s’)
Initialize Q4, 79, fu., B
for kin 1..N do
(s,a,r,s") < D: sample a batch of transitions from the dataset.
QF*1! < Update cost function Qg using the Bellman update in (2).
fhtt < Update f, wusing outputs of mp and samples from dataset:
arg Ininf 7]Es~D,a~1r’° (s) [fk('57 (l)] + U)]ES,aND [fk(sy (1)]
mk+1 < Update policy 7y as a transport map: arg min,, Eyp,anrt(s) [~Q%(s,a) — f*(s,a)].
end for
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Toy Experiments
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@ Compared to offline RL (b), new method demonstrated superior
performance by extracting and exploiting the insights from the data,
ignoring all inefficient actions.
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D4RL Experiments

Table 1: Averaged normalized scores on Antmaze-v2 tasks. Reported scores are the results of the
final 100 evaluations and 5 random seeds.

Dataset QL OTR+IQL CQL PPL“Z(Ours) | ReBRAC  PPLR(Ours)
umaze 87.5+26 83.4+33 86.3 £3.7 90+2.6 97.8+1.0 98.0 £14
umaze-diverse 622+138 689+13.6 | 34.6+20.9 40+2.6 88.3+13.0 93.6+6.1
medium-play 712+73 70.5 +6.6 63.0 +9.8 67.3+10.1 84.0+4.2 90.2 +3.1
medium-diverse | 70.0 + 10.9 70.4 +£4.8 59.6 £3.5 65.3+£8.0 763+135 84.8+14.7
large-play 39.6+5.8 453+69 20.0 £10.8 25.6+3.7 60.4 +26.1 76.8 +4.0
large-diverse 475+9.5 455+6.2 20.0 +5.1 23.6 +11.0 54.4+£25.1 76.6 +7.4
Total 378 384 283.5 311.8 461.2 520

@ The novel method provides state-of-the-art results for all datasets on
this task, and gives a significant improvement of (+16) and (+21)
points for the large environments.

@ They consistently outperform the previous best OT-based offline RL
algorithm, OTR+IQL.
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D4RL Experiments

Table 2: Averaged normalized scores on MuJoCo tasks. Reported scores are the results of the final 10

evaluations and 5 random seeds.

Dataset | BC  One-RL CQL IQL OTR+IQL TD3+BC ReBRAC | PPLX(Ours)
Half. 42.6 48.4 44.0 47.4 433 48.3 65.6 64.95+0.2

M | Hopper | 529 59.6 585 663 78.7 59.3 102.0 93.49+7.2
Walker 75.3 81.1 72.5 78.3 79.4 65.5 82.5 85.66+0.6
Half. 36.6 38.1 45.5 44.2 413 44.6 51.0 51.1£0.3

MR| Hopper | 18.1 97.5 950 947 84.8 60.9 98.1 100.0+2
Walker 26.0 49.5 713 73.9 66.0 81.8 71.3 78.66+2.0
Half. 55.2 93.4 91.6 86.7 89.6 90.7 101.1 104.85+0.1

ME Hopper | 52.5 103.3 105.4 91.5 93.2 98.0 107.0 109.0+1.2
Walker | 107.5 113.0 108.8  109.6 109.3 110.1 1123 111.74+1.1
Total 467.7 684.9 698.6 692.6 685.6 659.2 796.9 799.45

@ We can interpret that the new method lies between behavior cloning

and direct maximization of the @ function.
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Critical Reflection and Limitations

@ Choice of w: w controls the policy’s support (action range) and thus
action selection, but it is set arbitrarily across tasks. Task-adaptive
tuning may improve performance.

@ OT baselines: Lack of comparisons with other OT-based RL
methods under matched datasets, metrics, and compute.

@ Ablations: Lack of a comprehensive ablation study (components,
training objectives, hyperparameters).

@ Reporting: Minor inconsistencies in formatting and presentation of
results.
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Discussion and Future Directions

@ The authors introduces a novel algorithm for offline RL using optimal
transport.

@ The novel algorithm effectively selects and maps the best expert
actions for each given state.

@ Using the authors' formulation, other OT methods also can be
integrated into RL. (e.g., Various regularizations or general costs)

@ Weak Neural OT can be relevant in RL where stochastic behavior is
preferred for exploration in the presence of multimodal goals.
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